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Leader-Following Cluster Consensus of Multiagent
Systems With Measurement Noise and Weighted

Cooperative–Competitive Networks
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Abstract—Leader-following cluster consensus is investigated
for multiagent systems with weighted cooperative–competitive
networks and measurement noise. A stochastic approximation
protocol is proposed for interactively balanced and sub-balanced
networks, and pinning control is introduced to deal with the
divergence phenomenon in interactively unbalanced networks.
With these protocols, sufficient conditions for reaching a strong
mean-square leader-following cluster consensus are established
for all the three types of networks, which are also extended to
the cases without measurement noise. Numerical examples illus-
trate the effectiveness of the proposed protocols and theoretical
analysis.

Index Terms—Cluster consensus, leader-following, measure-
ment noise, multiagent systems (MASs), weighted cooperative–
competitive networks.

I. INTRODUCTION

CONSENSUS has long been a central topic to multiagent
systems (MASs), receiving much attention from the

research community [1]–[11]. In [1], the notion of consen-
sus is first proposed for single-integrator agents under a
directed network. A type of linear Laplacian feedback consen-
sus protocol is designed for agents under fixed and switching
topologies. It is shown that the directed network being strongly
connected is sufficient for ensuring consensus. The network
condition is further relaxed in [2] to the case that the directed
network having a spanning tree. Then, the existence of con-
sensus protocols, called consensusability, is studied in [3]. It
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is pointed out that consensusability of an MAS is closely
related to three key factors, i.e., the dynamics of each agent,
communication interactions among agents, and the admissible
control set. Necessary and sufficient consensusable conditions
on the above three factors are presented for the general lin-
ear MASs. Further, the consensusability problem in [3] is
extended in [5] to the discrete-time model over analog fading
networks. And then, optimal consensus for uncertain nonlin-
ear MASs is addressed in [10], where the proposed two fully
distributed adaptive protocols with disturbance rejection can
ensure consensus with minimized local cost functions. It is
noted that consensus is conventionally interpreted as the sce-
nario where all agents reach one common value. However, in
recent years, it is revealed that at least for certain MASs, the
agents may not necessarily converge uniformly to one common
value, but reach consensus in a “clustered” fashion, i.e., there
may exist more than one cluster of agents where the agents
in each cluster can reach consensus in the conventional sense,
as seen in foraging activities with mixed specifies [12], social
networks [13], etc. This type of consensus is often referred to
as “cluster consensus,” which can be in the form of either lead-
erless [14]–[17] or leader-following [18]–[23]. In this work,
we are particularly interested in the latter form, one typical
example of which is the honeybee swarms. It is reported that
approximately 5% of the honeybees, who are regarded as the
“leaders,” can guide all the bees, which include all the other
honeybees regarded as the “followers,” to a new nest site [24].

Leader-following cluster consensus has received increased
interest in recent years. To name a few, in [18], such consensus
is considered for second-order nonlinear MASs, with criteria
being given to ensure asymptotical cluster consensus. The con-
tinuous second-order dynamics in [18] is then extended to the
discrete-time version in [19]. In [20], leader-following clus-
ter consensus for double-integrator MASs is analyzed under
two different topology frameworks. It is proven that for both
frameworks the cluster consensus can be guaranteed under
conditions on coupling strengths of the considered topology.
In [21], the leader-following practical cluster consensus for
generic linear MASs is studied, where an event-triggered pro-
tocol is designed for each follower, and it is shown that cluster
consensus can be ensured by selecting proper parameters in
protocols regardless of the state estimation. Furthermore, a
frequency domain method is employed in [22] to investi-
gate the leader-following cluster consensus for heterogeneous
MASs.
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However, existing works on leader-following cluster consen-
sus need further developments in the following two aspects.

First, all the above-mentioned works are based on coop-
erative networks or binary cooperative–competitive networks,
where all the agents are either cooperative for the former
or both cooperative and competitive for the latter, repre-
sented by a signed digraph using non-negative and negative
edge weights for cooperative and competitive interactions,
respectively. Generally, the relationship among agents can be
far more complex than the context of either cooperation or
competition. For instance, in the process of opinion forma-
tion, one person may put different weights of approval or
disapproval on others’ opinions. This inspired the weighted
cooperative–competitive networks as introduced in [25], where
a weight matrix is employed to denote the extent of coopera-
tion/competition among agents and the network is divided into
three types.

Second, existing studies usually assume the accurate
information acquisition for all the agents, which can be prac-
tically impossible in many cases due to the existence of
measurement noise. Despite the works on measurement noise
for consensus [26]–[31] and bipartite consensus [32]–[34],
only a few results on cluster consensus [35]–[36] still assume
binary cooperative–competitive networks, while not surpris-
ingly weighted cooperative–competitive networks can be more
challenging.

To meet the above challenges, this work considers leader-
following cluster consensus of MASs perturbed by measure-
ment noise under weighted cooperative–competitive networks,
where the network is divided into three types: 1) interactively
balanced network; 2) sub-balanced network; and 3) unbalanced
network.

1) Knowing that the noise interference and the coupling
states of agents are the main difficulties for interactively
balanced and sub-balanced networks, we propose a dis-
tributed protocol with a time-varying function gain. The
time-varying gain then yields the closed-loop system in
the form of a challenging time-varying stochastic differ-
ential equation. We prove the state convergence of the
followers to the leaders under the proposed protocol,
with a constant proportion in the strong mean-square
sense, thus the leader-following cluster consensus.

2) We realize the fact that there exists at least one directed
circle with the weight product being not 1 for interac-
tively unbalanced networks, which then readily leads to
divergence. To deal with this phenomenon, we design a
pinning controller for certain followers to ensure leader-
following cluster consensus in the strong mean-square
sense. We also extend the results with measurement
noise to the case without it. Sufficient conditions are
provided with regard to the time-varying function gain
and pinning control to design leader-following cluster
protocols.

The main contributions of this work are threefold. First, both
measurement noise and weighted cooperative–competitive
network are considered, which reflect a more practical
model in many cases. Second, pinning control is introduced
to address the strong mean-square leader-following cluster

consensus problem for interactively unbalanced networks,
which is technically novel. Finally, with the help of stochastic
analysis and graph theory, the proposed stochastic approxi-
mation protocols successfully ensure leader-following cluster
consensus, regardless of measurement noise.

The remainder of this work is organized as follows.
Section II reviews the results of algebraic graph theory and
then introduces the considered problem. The leader-following
cluster consensus for the considered system is discussed under
three kinds of weighted cooperative–competitive networks in
Section III, respectively. Section IV validates the theoretical
results using numerical simulations, and Section V concludes
this article.

Notations: 1n = (1, . . . , 1)T is a column vector with
n-dimension. 0 is a matrix (vector) with an appropriate dimen-
sion. diag(a1, . . . , an) is a diagonal matrix with diagonal
elements ai, i = 1, . . . , n. λmax(B) and λmin(B) denote the
maximum and the minimum eigenvalues of a symmetric
matrix B, respectively. a ∧ b denotes the smaller one between
a and b.

II. PRELIMINARIES

A. Algebraic Graph Theory

Communication interactions among agents are described
by a weighted cooperative–competitive network G =
(V, E,A,D), where V is the node set, E ⊆ V × V is the
edge set, A = (aij) ∈ R

n×n is the adjacency matrix, aij ≥ 0
and aij > 0 iff (j, i) ∈ E . D = (dij) ∈ R

n×n is a weight
matrix, dij represents the weight extent among agents and
dij �= 0 iff (j, i) ∈ E . Furthermore, dij > 0 represents the
cooperative extent of i and j; dij < 0 represents the compet-
itive extent of i and j. We assume there exists no self-loop.
Agent i’s neighbor set is denoted by Ni = {j ∈ V|(j, i) ∈ E}.
L = (lij) is the Laplacian matrix of G = (V, E,A,D), where
lii =∑n

j=1,j �=i aij, lij = −aijdij, i �= j. Let Ls = (ls,ij)n×n be the
standard Laplacian matrix with ls,ii =∑n

j=1,j �=i aij, ls,ij = −aij.
A directed path in G is a sequence of edges

(i,V1)(V1,V2) · · · (Vk, j), expressed as Pij, where i,
V1, . . . ,Vk, j are distinct nodes. The interaction weight
product of this path is Rij = dV1idV2V1 · · · djVk . A directed
path Pij becomes a directed cycle Ci if i = j, and hence
Rii � Ci = dV1idV2V1 · · · diVk . The bidirectional graph of G
is denoted by Ĝ = (V, Ê, Â, D̂), where Â = (âij)n×n and
D̂ = (d̂ij)n×n such that

âij =
{

aji, (j, i) /∈ E, (i, j) ∈ E
aij, else

d̂ij =
{

d−1
ji , (j, i) /∈ E, (i, j) ∈ E

dij, else.

G is interactively balanced if all the weight products of
directed circles in Ĝ are equal to 1. G is interactively sub-
balanced if G does not have directed cycles and ∃Ci �= 1 in
Ĝ. G is interactively unbalanced if G has directed cycles and
∃Ci �= 1 in Ĝ.

Some useful lemmas are first provided, as follows.
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Lemma 1 [25]: Given G = (V, E,A,D) with a spanning
tree. G is interactively balanced if there exists an invertible
matrix R = diag(R11, . . . , R1n) satisfying R−1LR = Ls.

Lemma 2 [2]: Let Ls be a standard Laplacian matrix in
cooperative network G = (V, E,A). Ls has a single eigenvalue
equal to zero and all other eigenvalues have positive real parts
iff G contains a spanning tree.

B. Problem Formulation

Consider an MAS of one leader and N followers, where the
leader is labeled by 0 and followers are labeled by 1, . . . , N,
respectively. The state of the ith follower evolves according to
the following system:

ẋi(t) = ui(t) (1)

where xi, ui ∈ R are the state and control input. The leader’s
state is not affected by the followers and hence is assumed to
be a constant, denoted by x0.

Let G = (V, E,A,D) be the communication network of one
leader and N followers. Denote the communication network of
N followers as Gf = (Vf , Ef ,Af ,Df ). Then

Vf = {1, . . . , N},
V = {0}

⋃
Vf ,

A =
(

0 0
Gs · 1N Af

)

,

D =
(

0 0
D0 · 1N Df

)

where Gs = diag(g1, . . . , gN), gi > 0 iff 0 ∈ Ni, i =
1, . . . , N, and D0 = diag(d10, . . . , dN0). The Laplacian of
G = (V, E,A,D) is

L =
(

0 0
−GsD0 · 1N LGf + Gs

)

(2)

where LGf is the Laplacian of Gf .
Due to the measurement noise, the ith follower receives

information from its neighbors in the following form:

xji(t) = xj(t) + βji(t), j ∈ Ni, i = 1, . . . , N

in which xji(t) is the measurement of the jth agent’s state
xj(t) by the ith agent, and {βji(t), j ∈ Ni, i = 1, . . . , N} are
independent standard white noise.

The primary objective of this work is to introduce a dis-
tributed protocol for each follower subject to measurement
noise such that the followers achieve cluster consensus to the
leader.

The following cluster consensus protocol is used:

ui(t) = f (t)
∑

j∈Ni

[
aij
(
dijxji(t) − xi(t)

)

+ gi(di0x0i(t) − xi(t))
]
, i = 1, . . . , N (3)

where f (t) > 0 is a piecewise continuous function.
Clearly, protocol (3) is based on the states of agent i and

its neighbors and thus is distributed.

Remark 1:
1) Different from leader-following cluster consensus

in [18]–[22], the effect of measurement noise is consid-
ered in protocol (3). To deal with the measurement noise,
a time-varying function gain f (t) is employed here.

2) If dij ≡ 1(j ∈ Ni), then the protocol in (3) is reduced
to the protocol in [28]; if dij ∈ {±1}(j ∈ Ni), then the
protocol in (3) is reduced to the protocol in [34].

Let X(t) = (x1(t), . . . , xN(t))T . Applying the protocol in (3)
to the system in (1), one obtains

dX(t) = −f (t)
(

LGf + Gs

)
X(t)dt + f (t)GsD0 · 1Nx0dt

+ f (t)QdW∗(t) (4)

where Q = (H, GsD0) is an N × (N2 + N)-
dimensional matrix with H = diag(hT

1 , . . . , hT
N) ∈

R
N×N2

and hT
i = (ai1di1, . . . , aiNdiN).

W∗(t) = (w11(t), w21(t), . . . , wN1(t), . . . , w1N(t), . . . ,
wNN(t), w01(t), . . . , w0N(t))T ,

∫ t
0 βji(s)ds = wji(t),

i, j = 0, 1, . . . , N.
Obviously, the resulting system in (4) is a stochastic system.

Hence, we first define leader-following cluster consensus in the
strong mean-square sense, as follows.

Definition 1: The system in (1) achieves leader-following
cluster consensus in the strong mean-square sense if there
exists a protocol {ui, i = 1, . . . , N} such that the closed-loop
system satisfies

lim
t→∞ E(xi − cix0)

2 = 0, i = 1, . . . , N

where ci is a constant, determined by communication interac-
tions among agents.

Definition 1 implies that in the nontrivial case (x0 �= 0), the
states of the followers converge to cix0 in the strong mean-
square sense. This means that as time goes on the states of
followers are closely related to the communication interactions
among agents.

Note that traditional leader-following consensus and bipar-
tite consensus can be viewed as special cases of leader-
following cluster consensus, respectively, with respect to ci ≡
1 and ci = ±1, i = 1, . . . , N. If ci ≡ 1, i = 1, . . . , N, then
Definition 1 degenerates to the notion of leader-follower con-
sensus in [28]; if ci = ±1, i = 1, . . . , N, Definition 1 degen-
erates to the notion of leader-following bipartite consensus
in [34].

For analysis, the following assumptions are required.
(O1) G = (V, E,A,D) contains a spanning tree.
(O2)

∫∞
0 f (s)ds = ∞.

(O3)
∫∞

0 f 2(s)ds < ∞.
Note here that the assumptions made for f (t) in (O2)

and (O3) are widely adopt in stochastic approximation theory.

III. MAIN RESULTS

In this section, we study leader-following cluster consen-
sus in the strong mean-square sense based on three types
of weighted cooperative–competitive networks, i.e., inter-
actively balanced, sub-balanced, and unbalanced networks,
respectively.
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A. Interactively Balanced Network

Theorem 1: Under protocol (3), the system in (1) achieves
leader-following cluster consensus in the strong mean-square
sense if (O1)–(O3) hold and G is interactively balanced.

Proof: Since G is interactively balanced and (O1) holds, by
Lemma 1, there exists T = diag(T00, T01, . . . , T0N) such that

T−1LT =
(

0 0
−Gs · 1N Ls

Gf
+ Gs

)

� Ls (5)

where Ls
Gf

= (lsij), lsii =∑j∈Ni
aij, lsij = −aij, i, j = 1, . . . , N.

Clearly, Ls is a standard Laplacian matrix. By (O1) and
Lemma 2, −Ls

Gf
− Gs is Hurwitz. Hence

−
(

Ls
Gf

+ Gs

)T
B − B

(
Ls
Gf

+ Gs

)
= −IN (6)

has a positive-definite solution B.
Define δ(t) = (δ1(t), . . . , δN(t))T with δi(t) = T00T−1

0i xi(t)−
x0(t), i = 1, . . . , N. Then, by (4) and (5), one obtains that

dδ = −f (t)
(

Ls
Gf

+ Gs

)
δdt + T00f (t)T

−1
QdW∗ (7)

in which T = diag(T01, . . . , T0N). For convenience, one can
assume W(t) = (W1(t), . . . , WN(t))T , in which

Wi(t) =

⎧
⎪⎨

⎪⎩

w0i(t), g2
i +∑j∈Ni

T2
00T−2

0i a2
ijd

2
ij = 0

giw0i(t)+∑j∈Ni
T00T−1

0i aijdijwji(t)
√

g2
i +
∑

j∈Ni
T2

00T−2
0i a2

ijd
2
ij

, else.

This combining with (7) gives

dδ(t) = −f (t)
(

Ls
Gf

+ Gs

)
δ(t)dt + f (t)DdW (8)

in which D = diag(

√
g2

1 +∑j∈N1
T2

00T−2
01 a2

1jd
2
1j, . . . ,√

g2
N +∑j∈NN

T2
00T−2

0N a2
Njd

2
Nj). Consider a Lyapunov function

V(t) = δT(t)Bδ(t), where B is the positive-definite solution
to (6). Hence, by (8) and Itô formula, one obtains

dV(t) = −f (t)δT(t)δ(t)dt + f 2(t)tr(BDDT)dt

+ 2f (t)δT(t)BDdW.

Since B is a positive definite

dV(t) ≤ − f (t)

λmax(B)
Vdt + f 2(t)tr

(
BDDT)dt

+ 2f (t)δTBDdW. (9)

Now, one can prove that

E
∫ t

t0
f (s)δT(s)BDdW(s) = 0 ∀0 ≤ t0 ≤ t.

In fact, for any given t0 ≥ 0, T ≥ t0, define τ
t0
m = {t ≥ t0|

δT(t)Bδ(t) ≥ m}, where m > 0 and then by (9), one gets

E

[

V
(
t ∧ τ t0

m

)

χ
{

t≤τ
t0
m

}

]

− E[V(t0)]

≤ − 1

λmax(B)

∫ t

t0
f (s)E

[

V
(
s ∧ τ t0

m

)

χ
{

s≤τ
t0
m

}

]

ds

+ tr
(
BDDT)

∫ t

t0
f 2(s)ds

≤ tr
(
BDDT)

∫ T

t0
f 2(s)ds, ∀t0 ≤ t ≤ T. (10)

This means that ∃ϒt0,T > 0 related to t0 and T satisfying

E

[

V
(
t ∧ τ t0

m

)

χ
{

t≤τ
t0
m

}

]

≤ ϒt0,T , ∀0 ≤ t0 ≤ T.

Note that t∧τ
t0
m

−→a.s. t as m → ∞. From the above inequality
and the Fatou lemma, one sees that supt0≤t≤T E[V(t)] ≤ ϒt0,T .

Therefore, E
∫ t

t0
f 2(s)V(s)ds ≤ supt0≤t≤T E[V(t)]

∫ T
t0

f 2(s)ds <

∞, ∀t0 ≤ t ≤ T. Since T is arbitrary, one obtains
E
∫ t

t0
f 2(s)V(s)ds < ∞, ∀0 ≤ t0 ≤ t. This together with

E
∫ t

t0
f 2(s)

∥
∥δT(s)BD

∥
∥2

ds ≤ ‖B‖‖D‖2E
∫ t

t0
f 2(s)V(s)ds

proves E
∫ t

t0
f (s)δT(s)BDdW(s) = 0. From (9), it is seen that

∀t ≥ 0 and � ≥ 0

E[V(t + �)] − E[V(t)] ≤ − 1

λmax(B)

∫ t+�

t
f (s)E[V(s)]ds

+ tr
(
BDDT)

∫ t+�

t
f 2(s)ds

or

E[V(t + �)] − E[V(t)]

�

≤ − 1
λmax(B)

∫ t+�

t f (s)E[V(s)]ds + tr
(
BDDT

) ∫ t+�

t f 2(s)ds

�
.

Thus

lim
�→0+ sup

E[V(t + �)] − E[V(t)]

�

≤ − 1

λmax(B)
f (t)E[V(t)] + tr

(
BDDT)f 2(t).

In light of the comparison lemma [37], one has

E[V(t)] ≤ E[V(0)] exp{− 1

λmax(B)

∫ t

0
f (s)ds}

+ tr
(
BDDT)

∫ t

0
f 2(s) exp

{

− 1

λmax(B)

∫ t

s
f (τ )dτ

}

ds,

∀t ∈ [0, t + �]. (11)

By (O3), ∀ε > 0, ∃s0 > 0 satisfying
∫∞

s0
f 2(s)ds < ε. Then

tr
(
BDDT)

∫ t

0
f 2(s) exp

{

− 1

λmax(B)

∫ t

s
f (τ )dτ

}

ds

= tr
(
BDDT)

∫ s0

0
f 2(s) exp

{

− 1

λmax(B)

∫ t

s
f (τ )dτ

}

ds

+ tr
(
BDDT)

∫ t

s0

f 2(s) exp

{

− 1

λmax(B)

∫ t

s
f (τ )dτ

}

ds

≤ tr
(
BDDT) exp

{

− 1

λmax(B)

∫ t

s0

f (τ )dτ

}∫ s0

0
f 2(s)ds

+ tr
(
BDDT)

∫ t

s0

f 2(s)ds

≤ tr
(
BDDT) exp

{

− 1

λmax(B)

∫ t

s0

f (τ )dτ

}∫ ∞

0
f 2(s)ds

+ tr
(
BDDT)

∫ ∞

s0

f 2(s)ds

≤ o(1) + tr
(
BDDT)ε, t → ∞. (12)
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Further, one has

lim
t→∞ tr

(
BDDT)

∫ t

0
f 2(s) exp

{

− 1

λmax(B)

∫ t

s
f (τ )dτ

}

ds

= 0. (13)

By (O2), (11), and (13), one obtains that limt→∞ E[V(t)] =
0. Note that ‖δ(t)‖2 ≤ ([V(t)]/[λmin(B)]). This leads to
limt→∞ E‖δ(t)‖2 = 0. Let ci = T−1

00 T0i, i = 1, . . . , N. Then
by Definition 1, the system in (1) achieves leader-following
cluster consensus in the strong mean-square sense.

Theorem 1 shows that under interactively balanced network
and measurement noise, protocol (3) drives the states of the
followers in (1) to cix0 (x0 is the leader’s state) in the strong
mean-square sense if assumptions (O1)–(O3) hold. Among
these assumptions, (O1) is the requirement on communica-
tion topology, and (O2) and (O3) are the requirements on
consensus gain f (t) for guaranteeing a strong mean-square
leader-following cluster consensus.

From Theorem 1, we find that ci = T−1
00 T0i in Definition 1

is determined by Laplacian L. Thus, it heavily relies on the
communication network but has no relation to X(0).

Remark 2: G = (V, E,A,D) reduces to the traditional non-
negative digraph if dij ≡ 1(j ∈ Ni). In this case, G is naturally
interactively balanced and T0i ≡ 1 (i = 1, . . . , N). Thus,
Theorem 1 degenerates to [28, Th. 1].

Remark 3: With the effect of measurement noise, the result-
ing system is essentially a stochastic differential equation,
failing the protocols in [18]–[22] and [25] which do not
explicitly consider measurement noise. To meet this chal-
lenge, our protocol is in the stochastic approximation fashion,
using a time-varying function f (t) to eliminate the effect of
measurement noise.

Without measurement noise, protocol (3) can be
expressed as

ui(t) = f (t)
∑

j∈Ni

[
aij(dijxj − xi) + gi(di0x0 − xi)

]
(14)

which then yields the following error system:

δ̇(t) = −f (t)
(

Ls
Gf

+ Gs

)
δ(t). (15)

Theorem 2: Under protocol (14) and nji(t) ≡ 0, the system
in (1) achieves leader-following cluster consensus if (O1) and
(O2) hold and G is interactively balanced.

Proof: Since G is interactively balanced and (O1) holds,
taking the same procedures as in Theorem 1, by (15), one has

dV

dt
≤ − f (t)

λmax(B)
V(t). (16)

Thus, V(t) ≤ V(0) exp{−(1/[λmax(B)])
∫ t

0 f (s)ds}. By
(O2), limt→∞ V(t) = 0. This together with ‖δ(t)‖2 ≤
([V(t)]/[λmin(B)]) implies that limt→∞ ‖δ(t)‖ = 0.

Remark 4: Assumption (O2) naturally holds for f (t) ≡ 1. In
this case, Theorem 2 reduces to the conclusion that “leader-
following cluster consensus is reached if G is interactively
balanced and contains a spanning tree.”

B. Interactively Sub-Balanced Network

The following lemma is first given.
Lemma 3: If G = (V, E,A,D) is interactively sub-

balanced and has a spanning tree, then there exists a non-

singular matrix S such that SLS−1 =
(

0 0
0 L2

)

, where all

eigenvalues of L2 are positive.
Proof: Since G is interactively sub-balanced, by definition, G

does not have directed cycles. Thus, by [15], one can rearrange
all nodes in G such that i < j for (i, j) ∈ E , and aij = 0 ∀j ≥ i.
Therefore, L is a lower triangular matrix, i.e.,

L =

⎛

⎜
⎜
⎜
⎝

0 0 0 0
−g1d10 g1 · · · 0
...

...
. . .

...

−gNdN0 −aN1dN1 · · · gN +∑j∈NN
aNj

⎞

⎟
⎟
⎟
⎠

.

Since G has a spanning tree, L has a simple eigenvalue 0,
and other eigenvalues are positive. Suppose that

S =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 · · · 0
−a1 1 0 · · · 0
−a2 0 1 · · · 0
...

...
...

. . .
...

−aN 0 0 · · · 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(17)

where a1 = d10, ai = (gidi0 +∑j∈Ni
aijdijaj)/(gi +∑j∈Ni

aij),
1 ≤ j < i, i = 2, . . . , N. Then −g1d10 + g1a1 = −g1d10 +
g1(g1d10/g1) = 0, . . . , −gNdN0 − ∑j∈NN

aNjdNjaj + (gN +∑
j∈NN

aNj)aN = 0. Therefore

SLS−1 =

⎛

⎜
⎜
⎜
⎝

0 0 · · · 0
0 g1 · · · 0
...

...
. . .

...

0 −aN1dN1 · · · gN +∑j∈NN
aNj

⎞

⎟
⎟
⎟
⎠

�
(

0 0
0 L2

)

. (18)

This implies that all eigenvalues of L2 are positive.
Theorem 3: Under protocol (3), the system in (1) achieves

leader-following cluster consensus in the strong mean-square
sense if (O1)–(O3) hold and G is interactively sub-balanced.

Proof: By Lemma 3, one can assume that η(t) �
(η1(t), η2(t), . . . , ηN(t))T , where ηi(t) = xi(t) − aix0, i =
1, 2, . . . , N. Denote Y(t) � (x0, η

T(t))T . Then, Y(t) =
S

(
x0,

X(t)

)

. By (2) and (4), one gets

dY(t) = −f (t)SLS−1Y(t)dt + f (t)S

(
0
Q

)

M(t)dt.

This together with (18) gives

dη(t) = −f (t)L2η(t)dt + f (t)QdW∗. (19)

From Lemma 3, one sees that all eigenvalues of matrix
L2 are positive. Therefore, −L2 is a stable matrix. Adopting
the same procedures after (8) in Theorem 1, we get
limt→∞ E||η(t)||2 = 0. Let ci = ai, i = 1, . . . , N. Then
by Definition 1, the system in (1) achieves leader-following
cluster consensus in the strong mean-square sense.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 14,2023 at 08:54:38 UTC from IEEE Xplore.  Restrictions apply. 



MA et al.: LEADER-FOLLOWING CLUSTER CONSENSUS OF MASs 1155

Fig. 1. Communication topology G1.

Without measurement noise, (19) degenerates to

η̇(t) = −f (t)L2η(t) (20)

where leader-following cluster consensus can still be achieved.
Theorem 4: Under protocol (14) and nji(t) ≡ 0, the system

in (1) achieves leader-following cluster consensus if (O1) and
(O2) hold and G is interactively sub-balanced.

Proof: Similar to the analysis of Theorem 2, and hence the
proof is omitted.

Remark 5: Compared with the interactively balanced
network, which is supposed to be like the structurally balanced
one in a signed digraph, the interactively sub-balanced network
is newly defined, first introduced in [25]. Theorems 3 and 4
indicate that leader-following cluster consensus is also reached
under an interactively sub-balanced network regardless of
measurement noise.

C. Interactively Unbalanced Network

From the above two sections, we can obtain that based
on the proposed protocols, leader-following cluster consensus
can be achieved for interactively balanced and sub-balanced
networks either with or without measurement noise. However,
these results do not always hold for an interactively unbalanced
network.

Consider a counterexample of an MAS composed of three
robots and one leader robot. Their kinematic equations are
simplified to (1) with N = 3, where xi(t) is the information
state of the ith robot [38]. Information exchange among robots
are expressed by G1 = (V1, E1,A1,D1) with V1 = {0, 1, 2, 3},
A1 = (aij), a10 = a21 = a32 = 2, a13 = 1, D1 = (dij), d10 =
2, d21 = −3, d32 = 1, d13 = −2, as shown in Fig. 1.
Apparently, G1 has a spanning tree and contains a directed
cycle composed of robots 1–3. Notice that d21d32d13 = 6 �= 1.
Thus, G1 is interactively unbalanced.

Take f (t) = 5/(t + 1). Then, (O2) and (O3) hold. Applying
protocol (3) to (1), one obtains that the states of robots are
divergent as shown in Fig. 2. Protocol (3) does not solve
the leader-following cluster consensus under an interactively
unbalanced network. This prompts us to investigate how to
design protocols for an interactively unbalanced network to
achieve leader-following cluster consensus under measurement
noise. We find that pinning control can be a useful tool to solve
this challenge.

Fig. 2. Evolution of robots’ states under interactively unbalanced network G1.

When G = (V, E,A,D) has a spanning tree, without loss
of generality, one can assume that the spanning tree is ST =
(V, ET) with ET ⊂ E and renumber nodes in V with i < j for
(i, j) ∈ ET . In ST , let the directed path from 0 to i be PST

0i (i �=
0). Then, PST

0i is unique for any i ∈ V . Let R0i be the weight
product of PST

0i . Assume that M = diag(R00, R01, . . . , R0N)

with R00 = 1. Therefore, M−1LM = LM , where LM = (lM,ij) ∈
R

(N+1)×(N+1) and its elements satisfy lM,ii =∑k∈Ni
aik + gi

lM,ij =
{−R−1

0i aijdijR0j, (j, i) ∈ E\ET

−aij, others.

If G is interactively unbalanced, by definition, G has directed
cycles and ∃Ci �= 1 in Ĝ. These facts imply that there exists at
least one (j, i) ∈ E\ET such that R−1

0i dijR0j �= 1. This feature
consequently means that the Laplacian of G is not similar to
the standard Laplacian and hence not that useful for conver-
gence analysis, as seen earlier for interactively balanced and
sub-balanced networks. Therefore, the key idea in designing
protocols for interactively unbalanced networks is to eliminate
the effects of R−1

0i dijR0j �= 1. That is why pinning control is
employed here.

Theorem 5: Under protocol (3) and the added pinning
control, the system in (1) achieves leader-following cluster
consensus in the strong mean-square sense if (O1)–(O3) hold
and G is interactively unbalanced.

Proof: Since G is interactively unbalanced and (O1) holds,
there exists (j, i) ∈ E\ET such that R−1

0i dijR0j �= 1. Assume
�1 = {i | (j, i) ∈ E\ET , R−1

0i dijR0j �= 1}. Then, a pinning
control is added for agents in �1, i.e.,

ui(t) = f (t)
∑

j∈Ni

[
aij(dijxji(t) − xi(t))

+ gi(di0x0i(t) − xi(t))
]+ v∗

i (t), i ∈ �1

ui(t) = f (t)
∑

j∈Ni

[
aij(dijxji(t) − xi(t))

+ gi(di0x0i(t) − xi(t))
]
, i /∈ �1 (21)

where v∗
i (t) is the pinning control.
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Due to the definition of interactively unbalanced graph, we
obtain that ∃Ci �= 1 in Ĝ. According to the weight products of
directed circles in Ĝ, the proof will be divided into two cases.

Case 1: In Ĝ, all Ci > 0 and there exists at least one Ci �= 1.
We design the pinning control as follows:

v∗
i (t) = −kif (t)xi(t), i ∈ �1 (22)

where ki = −∑k∈Ni
aik − ∑j∈Ni

lM,ij. Apply protocol (22)
to (21) and assume δi(t) = R00R−1

0i xi(t) − x0. Then

dδ = −f (t)
(
Ls

M + Gs
)
δdt + f (t)diag

(
R−1

01 , . . . , R−1
0N

)

× QdW∗(t)

where Ls
M = (lsij)

lsij =
{∑

j∈Ni
aij|R−1

0i dijR0j|, i = j

−aij|R−1
0i dijR0j|, i �= j.

Since (O2) and (O3) hold, following the proofs after (7),
one obtains that the system in (1) achieves leader-following
cluster consensus in the strong mean-square sense.

Case 2: In Ĝ, there exists at least one Ci < 0. Define �2 =
{j|(j, i) ∈ E\ET , R−1

0i dijR0j < 0}. We design the pinning control
as follows:

v∗
i (t) = −kiif (t)xi(t) + f (t)

∑

j∈Ni∩�2

kijxji(t), i ∈ �1 (23)

where kii = −∑k∈Ni
aik + ∑

j∈Ni
|lM,ij|, kij = −aijdij[1 +

sgn(lM,ij)]. Apply protocol (23) to (21) and assume δi(t) =
R00R−1

0i xi(t) − x0. Then

dδ = −f (t)
(
Ls

M + Gs
)
δdt + f (t)diag

(
R−1

01 , . . . , R−1
0N

)

× Q̃dW∗(t).

Similarly, one obtains that the system in (1) achieves
leader-following cluster consensus in the strong mean-square
sense.

In the absence of measurement noise, we have the following
conclusion.

Theorem 6: Under protocol (21)–(23) and nji(t) ≡ 0, the
system in (1) achieves leader-following cluster consensus if
(O1) and (O2) hold and G is interactively unbalanced.

Remark 6: Compared with the conditions in Theorems 2, 4,
and 6 with nji(t) ≡ 0, Assumption (O3) plays an impor-
tant role in Theorems 1, 3, and 5 with measurement noise.
Actually, (O3) is introduced to eliminate the harmful effects
of measurement noise.

Remark 7: Different from the previous results on cluster
consensus or leader-following cluster consensus of MASs per-
turbed by measurement noise, e.g., [35] and [36], where it is
assumed that the communication interactions are described by
binary cooperative–competitive network, in this present work,
we consider the weighted cooperative–competitive network,
which includes binary cooperative–competitive network as its
special case. Such network is more closer to the practice,
where like/dislike and agreement/disagreement between agents
are not merely an ON/OFF signal.

Fig. 3. Communication topology G2.

Fig. 4. Evolution of vehicles’ states under G2 with measurement noise.

IV. NUMERICAL EXAMPLE

Example 1: Consider a group of one leader and five vehicles
moving together, where vehicles are described by a simpli-
fied kinematic (1) with N = 5 [38]. The basic idea is to
drive the state of each vehicle toward the multiple of the
leader’s state. Fig. 3 shows the information exchanges among
vehicles, expressed by G2 = (V2, E2,A2,D2), where V2 =
{0, 1, 2, 3, 4, 5}, A2 = (aij), a10 = a21 = 2, a30 = a32 = 1,
a24 = a53 = 3, a43 = 4, and D3 = (dij), d10 = d30 = 1,
d21 = 2, d24 = −2, d32 = 0.5, d43 = d53 = −1. Clearly, G2
has a spanning tree, i.e., (O1) holds. Notice that d32d43d24 = 1,
d10d21d32d−1

30 = 1 and d10d21(d24d43d30)
−1 = 1. Therefore,

G2 is interactively balanced. Take f (t) = 1/(t + 1) in pro-
tocol (3). Thus, (O2) and (O3) hold. Assume x0 = 2 and
X(0) = (−3, 1,−1, 3, 0)T . Then, Fig. 4 shows the state tra-
jectories of vehicles. Apparently, as time goes on, vehicles are
divided into three clusters: 1) leader 0 and vehicles 1 and 3;
2) vehicles 4 and 5; and 3) vehicle 2. This means that vehi-
cles achieve leader-following cluster consensus in the strong
mean-square sense, which is consistent with Theorem 1.

Without measurement noise, we choose f (t) = t in proto-
col (14), then (O2) holds. Fig. 5 shows that leader-following
cluster consensus is reached under G2. This verifies the
effectiveness of Theorem 2.
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Fig. 5. Evolution of vehicles’ states under G2 without measurement noise.

Fig. 6. Communication topology G3.

Example 2: In this example, we consider one leader and
three vehicles with dynamics (1). Communications among
vehicles are described by G3 = (V3, E3,A3,D3), as shown
in Fig. 6, where V3 = {0, 1, 2, 3}, A3 = (aij), a10 = a21 = 2,
a31 = 1, a32 = 3, and D1 = (dij), d10 = 2, d21 = d32 =
1, d31 = −1. It is direct to check that G3 is interactively sub-
balanced and has a spanning tree. We choose f (t) = 1/(t + 1)

in protocol (3). Then, (O2) and (O3) hold. We adopt the ini-
tial conditions of x0 = 1 and X(0) = (−1, 4, 0)T . The state
trajectories of vehicles in Fig. 7 show that vehicles are divided
into two clusters: leader 0 and vehicle 3; and vehicles 1 and 2,
respectively. Therefore, leader-following cluster consensus in
the strong mean-square sense is achieved for an interactively
sub-balanced network. This verifies the result of Theorem 3.

When there is no measurement noise, one can choose
f (t) = t in protocol (14). Leader-following cluster consen-
sus is observed in Fig. 8. This is in line with the result in
Theorem 4.

Example 3: As is shown in Fig. 2, for an interactively
unbalanced network G1, the MAS with protocol (3) may be
divergent. To achieve leader-following cluster consensus under
measurement noise, a pinning control (21), (22) is added since
all Ci > 0 and Ci �= 1 in Ĝ1. Therefore, it follows from
Theorem 5 that k1 = 5 in (22). Apply (21) and (22) to the

Fig. 7. Evolution of vehicles’ states under G3 with measurement noise.

Fig. 8. Evolution of vehicles’ states under G3 without measurement noise.

robots. Then, the trajectories of the states of the three robots
under G1 are depicted in Fig. 9, from which it can be seen
that leader-following cluster consensus for an interactively
unbalanced network with pinning control is indeed achieved.

When there is no measurement noise, we apply proto-
cols (21) and (22) to the three robots. Fig. 10 shows that
leader-following cluster consensus is reached under an inter-
actively unbalanced network. This verifies the effectiveness of
Theorem 6.

V. CONCLUSION

This work investigates leader-following cluster consensus
of MASs subject to measurement noise, under three types of
weighted cooperative–competitive networks, namely, interac-
tively balanced, sub-balanced, and unbalanced networks. For
the former two cases, a distributed protocol with a time-
varying gain function is proposed, under which it is proved that
leader-following cluster consensus in the strong mean-square
sense can be reached. For the third case, the strong mean-
square leader-following cluster consensus is achieved with
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Fig. 9. Evolution of robots’ states with pinning control under G1.

Fig. 10. Evolution of robots’ states with pinning control and nji(t) ≡ 0
under G1.

the aid of pinning control. Furthermore, corresponding results
have also been presented for the case without measurement
noise.
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